

Class 10 Mathematics – Chapter: Introduction to Trigonometry

1. Introduction

Trigonometry deals with the relationship between the angles and sides of right-angled triangles.

2. Trigonometric Ratios

For a right-angled triangle with angle θ :

- Opposite side: side opposite to θ
- Adjacent side: side next to θ (other than hypotenuse)
-

Hypotenuse: longest side opposite right angle

The primary trigonometric ratios are:

$\sin\theta = \text{Opposite}/\text{Hypotenuse}$, $\cos\theta = \text{Adjacent}/\text{Hypotenuse}$, $\tan\theta = \text{Opposite}/\text{Adjacent}$
 $\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$, $\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$, $\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}$
 $\sin\theta = \text{Hypotenuse}/\text{Opposite}$, $\cos\theta = \text{Hypotenuse}/\text{Adjacent}$, $\tan\theta = \text{Adjacent}/\text{Opposite}$

3. Reciprocal Ratios

$\csc\theta = 1/\sin\theta$, $\sec\theta = 1/\cos\theta$, $\cot\theta = 1/\tan\theta$
 $\csc \theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\tan \theta}$
 $\csc\theta = \sin\theta^{-1}$, $\sec\theta = \cos\theta^{-1}$, $\cot\theta = \tan\theta^{-1}$

4. Important Identities

$\sin^2\theta + \cos^2\theta = 1$

5. Applications

- Finding sides or angles in right-angled triangles.
- Used in surveying, navigation, architecture, and physics.

6. Important Exam Tips

- Remember definitions and formulas clearly.
- Practice problems with different angles.

- Use a calculator for values of trigonometric ratios if allowed.
- Draw diagrams for better understanding.